

Simulation and Verification of [Dys]functional
Behavior Models: Model Checking for SE

Charlotte SEIDNER & Jean-Philippe LERAT
SODIUS

6 rue de Cornouaille BP 91941
44319 Nantes Cedex 3, France
{cseidner, jplerat}@sodius.com

+33 2 28 23 60 60

Olivier H. ROUX
IRCCYN

1 rue de la Noë BP 92101
44321 Nantes Cedex 3, France

Olivier-h.roux@irccyn.ec-nantes.fr
+33 2 40 37 69 76

Copyright © 2010 by Seidner, Lerat & Roux. Published and used by INCOSE with permission.

Abstract. Verification is a key process in the dependability engineering of complex systems.
As we have shown in earlier works, formal verification techniques such as model checking
can be efficiently used in a Systems Engineering (SE) context, despite their inherent
complexity. Considering the widely used Enhanced Function Flow Block Diagrams
(EFFBDs), we have indeed developed a formal simulation and verification tool for these
functional behavior models. Moreover, great care has been taken to conceal the processing
complexity from the tool end-user.
In this paper, we present our latest developments as well as an extension of both method and
tool to the case of dysfunctional models, to take into account failures affecting the model
elements. By addressing both fault removal and fault forecasting problems with formal
methods, we thus hope to improve the dependability analysis practice in SE.

Introduction: the why’s and how’s of formal verification
Verification actions are a major tool of dependability assessment and as such have always
been a preeminent part of Systems Engineering processes (IEEE, 2005)

A common practice for assessing the system safety is to perform either tests on the actual
system or simulations on a behavioral model. However, this analysis cannot be exhaustive,
even on “reasonably sized” systems, and carries the risk of missing potentially safety-critical
situations in which the system is liable to endanger itself or its environment. To overcome
this limitation, the designer may use a formal method such as model checking, where the
identified properties are formally expressed and confronted to a formal model of the system,
using efficient algorithms and data structures.

. Given today’s trend
to develop ever larger and more complex systems, verification has become a key element in
the system design, all through its lifecycle.

In previous work, we have shown that the inherent complexity of this formal method can be
overcome and efficiently used in a SE context (SEIDNER et al., 2008). Considering the widely
used EFFBDs (LONG, 1995), we have indeed proposed their formalization and translation
into a lower-level language, the time PETRI nets or TPNs (MERLIN, 1974)

This paper focuses on the latest results, both theoretical and practical, that we have obtained

. Using both the
properties of our translation and a software tool dedicated to the model checking of
behavioral properties on TPNs, we have developed an analysis platform allowing the
verification of high-level properties on EFFBDs models. By hiding the underlying models,
we have improved the overall efficiency and usability of this formal method by the system
designer.

mailto:cseidner@sodius.com�
mailto:Olivier-h.roux@irccyn.ec-nantes.fr�

over the last two years. We have indeed developed a simulation tool which, used in
conjunction with our verification tool, helps the designer with the visualization and
understanding of the verification results, thus further enhancing the usability of our method.
We have also extended our results to take into account the possibility for some model
elements to be affected by failures. By shifting our work from purely functional architecture
analysis to its dysfunctional counterpart, we move from fault removal to fault forecasting,
two major means of attaining the dependability of a system (LAPRIE

Related works. Over the last decade, the formal verification of high-level models has
motivated a number of research work, essentially focused on the formalization of these
models. The authors of

, 1992).

(ANDRÉ et al., 2007), for instance, have proposed a formal semantics
of MARTE1, a Unified Modeling Language (UML) profile dedicated to the description of
real-time embedded systems. It is then possible to check the behavior of communicating
systems with regards to some protocols (LE TALLEC et al., 2009)

In this context, the Object Management Group (OMG) and the INCOSE have recently
developed the Systems Modeling Language (SysML) as a subset of UML, adding such SE-
specific notions as requirement management (SysML, 2008). Despite the recentness of the
language, some research works on the formal verification of SysML diagrams have already
been proposed. The authors of (

. Yet, and despite similar
efforts, UML semantics is still incomplete (or contradictory) and largely software-oriented.

EVROT

Lastly, the Architecture Analysis and Design Language or AADL, described in (SAE, 2009),
has been gaining importance over the last years as a powerful modeling tool by supporting
the analysis of a number of formal properties such as reliability, deadlock detection, deadline
management, etc. (

 et al., 2008) give for instance a method for checking
some safety properties on SysML models. However, their method is only semi-formalized
and does not address the usability problem of such formal methods in a SE context.

RUGINA 2005; BERTHOMIEU et al., 2009; RENAULT

Outline of the paper. We first give and informal view of the EFFBDs and then describe their
formalization and simulation. We then present the verification method and the software tool
we have developed over the last two years. The next section proposes a description of the
failures that can affect an EFFBD; it also extends the various results obtained so far. We then
illustrate these results on the classic level-crossing problem. Finally, we conclude this paper
by presenting some outlooks and prospects of our research and development works.

 et al., 2009). However,
the language still suffers from semantics imprecision, lacks maturity and is still largely real-
time and embedded system-oriented.

From the description of EFFBDs to their simulation
This section introduces the EFFBDs as the high-level models on which we later propose the
verification of some complex behavioral properties. We give here a simplified version of its
formal syntax and semantics, as established in (SEIDNER, 2009), and briefly present the
simulation tool built from this formal description.
An informal description. System designers often use relatively simple graphical
representations to efficiently describe both the functional structure of a system and the data
flow exchanges. Among these representations, FFBDs (developed in the late 1950s) and the
derived EFFBDs are some of the most widely used in Systems Engineering (LONG

1 MARTE stands for Modeling and Analysis of Real Time and Embedded systems.

, 1995).
Indeed, they provide the designer with an easy framework to describe the behavior of
complex, distributed, hierarchical, concurrent and communicating systems. More specifically,
they describe the functions performed by the system and the order in which they are executed.

This order is specified through:
• the functions’ dynamic i.e. their execution duration;
• the control environment, namely the control constructs or structures;
• the data environment (items and resources).

While functions are represented by rectangles, control structures are usually denoted by two
complementary round nodes (see below). A large variety of control structures is available,
such as:

• parallel branches (AND), including “kill branches” that force the termination of other
branches in the parallel structure;

• selection structures (OR) and multi-exit functions;
• iterations (IT) and loops2

An EFFBD is organized in a main scenario; to support the modeling of hierarchical systems,
functions can in turn contain sub-scenarios. In addition, EFFBDs model data flows; in this
work, we merged the notions of both item and resource (distinct in the original formalism)
into the concept of flow. A flow can be consumed, produced or captured by functions

 (LP).

3

Figure 1

, and
models such diverse elements as signals, finished products or CPU memory. Graphically, the
relation between a function and a flow is represented by a weighted arrow.

 shows an example of an EFFBD; the diagram does not correspond to an actual
system but rather represents the language main features. To make the reading easier, flow
quantities equal to 1 are not mentioned on the arrows modeling their exchange.

Figure 1: Example of an EFFBD, adapted from (LONG, 1995)

The behavioral semantics of an EFFBD is quite intuitive: informally speaking, it consists of a
set of rules describing the course of the control flow along the structures, the execution of a
function, the production of some flow, etc.

2 Loops are infinite and can only be exited by reaching a loop exit (LE) structure.
3 It can also be checked, that is read without being actually consumed by the receiving function.

For instance, the behavior of a parallel structure is the following:
 once the control flow has reached the opening AND node, the first structure on each

parallel branch is activated;
 once the last structure of each parallel branch has finished its execution4

Likewise, the behavior of a function, once enabled by the control flow, is the following:

, the parallel
structure is exited and the control flow transferred to the structure following the
closing AND node.

 [if needed] wait for all the input flows to become available;
 [if needed] synchronously consume the input flows;
 start the execution;

After a certain duration, described by an interval:
 end the execution;
 [if needed] synchronously produce the output flows;
 transfer the control flow to the next structure.

Formalization of the EFFBDs. To our knowledge, no formal semantics had been given to
the EFFBDs before our work, despite their intuitive behavior. Yet, this formalization is an
indispensable step to any further formal analysis.
Regarding its syntax, an EFFBD can be seen as a set of:

• nodes modeling the control structures (including the functions);
• flows linked to the function nodes by weighted arcs denoting exchanged quantities;
• intervals giving for each function its minimum and maximum execution duration.

The behavior of an EFFBD is then described as a succession of states; each state represents:
• the activity of each node: it can be either inactive, enabled, executed5

• the level of each flow, i.e. the quantity of flow available in this state;

 or, for
functions only, executing;

• the time elapsed since the beginning of the execution of each function.
Since time elapsing is here a continuous process, each given model corresponds to an infinity
of possible executions. The set of all possible executions can be symbolically represented by
a very low-level language known as a Timed Transition System or TTS (HENZINGER et al.,
1991).
More formally, the semantics of an EFFBD E is a tuple (S, s0

• S is the set of states, as described above;
, N, →) where:

• s0

• N is the set of nodes;
 is the initial state;

• → is the transition relation that formalizes the semantics rules described above by
declaring how to proceed from a state to the following.

From this description, a complete version of which can be found in (SEIDNER, 2009), we were
able to define the class of bounded EFFBDs for which the flow levels always stay finite. The
practical implication of the boundedness of an EFFBD will be discussed in the next section.
The formalization of the language was also the first step in the definition and implementation
of a simulation tool, described in the following paragraph.

4 Note that such a behavior may induce synchronization-waiting states.
5 An executed node is located at the end of a parallel branch and is waiting for the completion of the other
parallel branches.

An EFFBD simulation tool. As we have recalled in the introduction, simulating a system
model cannot be, by itself, sufficient proof of its correct behavior. However, it provides the
system designer with a fair insight upon its behavior, which is particularly needed in the early
design phases of a complex system.
Therefore, we have implemented the formal semantics mentioned above into a simulation
tool. This tool is included in MDWORKBENCH®6

Figure 2

, a design and analysis platform based on
Eclipse®. A specific version has been developed for the French Department of Defense and
is currently being deployed and evaluated. The global running of the simulation tool is
illustrated on .

Figure 2: Description of the simulation tool

The left-most box represents the model editor (the dashes indicate that the designer has
access to this module); it allows the user to describe the system, mostly graphically. The
model E is then transferred to the simulation engine (center box) to compute a series
{s0, s1, …} of states representing a possible execution of the model. This run is then
displayed as a timeline or chronogram in the corresponding interface (right-most box). If
needed, the user can perform on-the-fly choices to resolve flow conflicts, multiple choices in
selection branches, etc. Moreover, the simulation can be played step-by-step or in a unique
run. Finally, the simulation can be exported as an XMI7

 file so it can be later analyzed or
printed.

Formal verification of EFFBD models
In this section, we present the main results and tools used to perform the formal verification
of complex behavioral properties expressed on EFFBDs. The complete verification process,
including the transformation into TPNs, was described in (SEIDNER et al., 2008); in this
paper, we focus on the system engineer’s point of view by describing the global verification
principles, the main property classes and finally our verification software tool.

General principles. From the formal semantics of the EFFBDs, it would be possible to
design and develop a model checker that directly analyzes the high-level models. However,
we chose to propose instead a translation of the EFFBDs into a lower-level model, the TPNs.
This step indeed allowed us to take advantage of the numerous works that have been carried

6 See http://www.mdworkbench.com for further details.
7 XMI is the OMG XML Metadata Interchange standard used for exchanging metadata information via the Ex-
tensible Markup Language (XML).

http://www.mdworkbench.com/�

out on the TPNs and most notably of the ROMÉO model checker8

We designed a structural translation which creates elementary TPNs for each node and flow,
then connects the patterns together. We have proved that the behavior of an EFFBD and its
corresponding TPN are equivalent with regards to the strong temporal bisimulation relation.
In other words, any timed behavioral analysis (including model checking) can be performed
on an EFFBD or on its TPN counterpart without information loss, which justifies our
approach.

, a software tool designed to
check complex quantitative temporal properties on TPNs.

Logical property classes. Before illustrating this fundamental result with our verification
tool, we first need to describe the safety and vivacity properties that can be expressed and
checked by it9

To allow for an efficient use of this logic by the system designer, we have chosen to limit the
logic expressivity by providing six high-level property classes, described and manipulated in
natural language. Should the need arise, other property class could be added, provided that it
can indeed be expressed with the TCTL logic.

. These properties are expressed using the Timed Computation Tree Logic or
TCTL (ALUR et al., 1990), a powerful yet complex formalism.

The existing classes are presented in Table 1 along with their parameters and meaning.

Table 1: Behavioral property classes

 Property class Parameters Meaning
I Completing execution S main scenario “S always reaches its final state”
II Timed completing

execution
S
t

main scenario
temporal bound

“S always reaches its final state in less
than t time units”

III10 Strict temporal
decomposition

F
t

decomposed function
temporal bound

“The sub-scenario associated with F is
always executed in less than t time units”

IV Mutual exclusion F set of functions i “Only one Fi

V

 function, at most, can be
executed at any given time”

Bounded response F
F

1

t
2

triggering function
triggered function
temporal bound

“Executing F1 leads to the execution of
F2

VI

 in less than t time units”

Flow boundedness f
m

flow
maximum level

“At any time, the level of flow f is lower
or equal to m”

For instance, a class I property allows the detection of a system blockage, most likely due to a
function waiting for an input flow that will never be produced. A class VI property can test
the k-boundedness of the model (where k, a positive integer, is specified by the system
engineer). Such a property is particularly helpful when dimensioning the system since it
states that no flow level is greater than k. Moreover, an unbounded EFFBD can be the
consequence of a badly designed model (as most systems are physical and intrinsically
bounded) and the non verification of the k-boundedness should alert the architect on a flaw in
the system design.
From a theoretical point of view, we have shown that the model checking of these properties
is a decidable problem for bounded EFFBDs and that it belongs to the class of PSPACE-
complete problems11

8 The software tool is available at

.

http://romeo.rts-software.org
9 A safety property means that a “bad situation” will never occur; a vivacity property that a “good situation” will
eventually occur.
10 This property is actually a generalization of the class II property.
11 For further details on decidability and complexity problems, see for instance (Garey et al., 1979).

http://romeo.rts-software.org/�

An EFFBD verification tool. As mentioned above, we have implemented these results in
MDWORKBENCH®, as illustrated by Figure 3 (the legend is the same as in Figure 2).

Figure 3: Description of the verification tool

As earlier, the left-most box represents the model editor; the model E and the property P are
transferred to the verification engine to be transformed into equivalent, low-level model and
property ε and π. These elements are then analyzed by the ROMÉO model checker (bottom)
which computes the truth value of π. If the property is not true, it provides a run or trace τ as
a sequence of TPN transitions leading to a state contradicting π.
Finally, this trace is translated back by the verification tool into a high-level trace T, which is
a sequence of EFFBD functions executions, ending on a state contradicting P. This result is
then displayed in a console (right-most box) and can be exported as a text file. It should be
noted that the complexity of the treatment is completely hidden from the system designer,
who only manipulates the high-level objects.

From functional to dysfunctional models
The previous sections have described the system from a functional point of view only; the
verification of such models is indeed a major process in fault removal, one of the mean of
attaining the dependability of a system. This dependability can also be reached through fault
forecasting, where faults or failures are injected into the model and analysis are performed on
the dysfunctional architecture.
In this section, we first propose a description of the failures that can affect either the
functions or the flows of an EFFBD. We then extend the behavioral properties defined earlier
as well as the main results presented above.

Failures description. The failures we chose to model are largely inspired by the usual
failures modes, described in such methods as the Failure Modes and Effects Analysis
(FMEA). Failures can affect a function or a flow and are either permanent or transient. In the
latter case, an occurrence probability is added to the failure description. We consider seven
failure types; the five first affect a function:

(i) No activation: when reached by the control flow, the function is neither enabled nor
executed; the control flow is not transferred to the next structure.

(ii) Infinite duration: once the execution has started, it cannot end.
(iii) Modified duration: the execution starts and ends normally, except its duration now

belongs to a new interval (described by the failure parameters).
(iv) No outputs: at the end of its execution, the function transfers the control flow without

producing its output flows.
(v) No control transmission: at the end of its execution, the function produces its output

flows but does not transfer the control flow.
A type (i) failure corresponds to the “no start” generic failure mode while type (ii) is a “no
end” failure mode.
Two failure types can affect the flows:

(vi) Modified initial level: the initial level of the flow is given by a new value.
(vii) Modified produced quantity: the flow quantity produced by the function is given by a

new value.
A type (vii) failure is actually a refinement of type (iv) and affects a function-flow couple.

Extending the properties. We have extended the formal syntax and semantics of the
EFFBDs to take the failures into account. In particular, a function can now be in the failed
activity. We have also described four more high-level property classes, given in Table 2. In
the following, we assume that all failures are of type (i) and that they affect functions F and
F1 to Fn

.

Table 2: Extension of the properties

 Property type Parameters Meaning
VII Reliability F function “F never fails”
VIII Recovery F

t
function
temporal bound

“F never stays in the failed activity
more than t time units in a row”

IX Bounded response
after failure

F, G
t

functions
temporal bound

“The failure of F always triggers the
execution of G in less than t time units”

X Failure mutual
exclusion

F set of functions i “Only one function Fi

, at the most, can
fail at the same time”

For instance, a class X property can test the robustness of a two-branch redundant
architecture, where at last one redundant branch must not fail.

Main results. From the various formal descriptions we developed, we were able to extend
the elementary patterns to translate the dysfunctional EFFBDs into TPNs. We were also able
to extend the simulation and verification tools; the model checking of the properties is still a
decidable and PSPACE-complete problem for bounded EFFBDs. Additionally, the
simulation tool allows some failure traceability since any failed function execution or flow
production can be graphically marked and linked to the description of the failure (see below).

The level-crossing problem
We have chosen to illustrate these results on the classical level-crossing problem. This
section voluntarily presents a simplified version of the problem: indeed, we want to hint with
this example at the expressivity and power of the method, while keeping a discourse as clear
as possible.
We first discuss the system and its modeling, including two function failures, and then
describe two safety and vivacity properties. Finally, we show the simulation and verification
results obtained on the dysfunctional model.

System and model description. We focus here on the common half-barrier level-crossing
(LC). It consists of two half-barriers, bells and red flashing lights on either side of the road.
The gates are surrounded by the short zone (see Figure 4) which is preceded by a longer
approach warning zone. A pedal located at point A signals any approaching train; another

pedal in E detects the last train carriage and commands the reset of the LC. A fuller
description of the system and modeling hypothesis can be found in (SEIDNER, 2009).

Figure 4: Schematic plan of the railroad level-crossing

Once the pedal in A is activated, the events are the following:
 flash the lights and start ringing the bells;
 after 5 seconds, lower the gates;
 once the gates are down (after 5 to 10 seconds), stop the bells;
 once the pedal in E is activated, raise the gate;
 once the gates are up (after 10 to 15 seconds), turn the lights off.

We assume here that the trains are 190 meters long and that they can travel at a speed (not
necessarily constant) comprised between 10 m/s and 20 m/s (about 35km/hr or 20 mph and
70 km/hr or 45 mph). In addition, the zone between points A and E is a one-way single track.
More precisely, we suppose that the track is looping, that only one train is on it and that it
takes at least 2 minutes for the train to get back from E to A. It is therefore unnecessary to
model any LC access protection system.
Finally, we suppose that the road users are respectful of the traffic regulations. Therefore, we
only have to model the train (which can be seen as the LC environment), the controller and
the gates. The resulting model is illustrated by Figure 5; when not equal to [0, 0], the duration
intervals are directly mentioned on the functions. The time unit is the second and, to make the
reading easier, the flashing light control is not modeled.

Figure 5: EFFBD model of the level-crossing problem

We have adopted a classical parallel architecture where each branch represents one “organ”

of the system or its environment12

Finally, we suppose that two failures can affect the system:

. Each branch communicates and is synchronized with the
others through flows. For instance, the approach of a train (through the activation of the pedal
in A) is modeled by the flow approaching, produced by Reach A and triggering the
execution of Monitor incoming trains. Note the open and closed flows: they
describe the aperture state of the gates (as the gates are initially raised, the level of open is
initially 1 while the initial level of closed is 0). Note also that the train is on the level-
crossing exactly when the function Leave D is executing.

F1. “Due to a wrong modeling, the gates always take 30% more time than expected to
reach the low position”

F2. “Trains have a 1% chance of staying blocked on the level-crossing”
We thus add the following failures:

• F1 is a permanent type (iii) failure affecting function Lower gates and is
characterized by the new temporal interval [7; 13];

• F2 is a transient type (ii) failure affecting function Leave D, with a 0.01 probability
of occurrence.

Properties description. We can now describe the two following behavioral properties:
P1. “To ensure the safety of the LC and its environment (including the road users), the

barriers must be closed if a train is on the LC”
P2. “To keep a smooth road traffic, the gates should not stay closed more than 90 seconds

in a row”
P1 is a safety property and can be modeled by a type IV property (mutual exclusion) between
functions Leave D and Raise gates. P2, a vivacity property, can be modeled as a type V
property (bounded response) where the triggering function is Lower gates, the triggered
function Raise gates and the temporal bound 90 seconds.

Main results. In this last paragraph, we focus on the analysis of the dysfunctional model.
Moreover, we wish to recall that the properties described above and the model itself are
simple enough to be checked “by hand”: again, our goal here is to give an insight into the
power of the method.
P1 is verified: indeed, the functional model (and the system itself) is designed to enforce the
safety property. The model is robust enough to allow for the large imprecision on the duration
of Lower gates caused by F1. Finally, the occurrence of F2, where the train is blocked on
the LC (thus blocking the gates in their lower position) only reinforces the property.
On the other hand, the vivacity property is not verified. Indeed, when the train is blocked on
the LC due to the occurrence of failure F2, the whole model comes to a deadlock and the
gates can no longer be raised, thus invalidating the property. A corresponding trace, given by
Table 3, is thus computed by our verification tool. As Reach D never ends, due to the
occurrence of F2, it is not part of the trace.

Table 3: An execution trace of the level-crossing model

Ending function
Reach A

Monitor incoming trains
Start ringing
Lower gates

12 Needless to say, the modeling of this system is not unique.

Stop ringing
Reach B
Reach C

A simulation run of the system is illustrated by Figure 6 (to make the reading easier, we
shifted the timeline to let is start after 120 seconds). To simplify the reading, no flows except
open and closed are represented; they are marked by blue blocks. The execution of a
function is marked by a green block while the wait for some input flow is marked in orange.
Note that, during the execution of Lower gates (between 160.5 time units and 173.0 time
units), the gate is neither open nor closed: it is indeed lowering.
Symbols are added to the blocks to mark the occurrence of a failure. For instance, F1 causes
the function Lower gate to have a modified duration, which is denoted by a warning sign
and a red clock symbol on the right of the execution block. Likewise, the infinite duration of
function Leave D, caused by the occurrence of F2, is denoted by a ∞ symbol (also
mentioned on the date line). Additionally, a contextual menu linking to the failure description
can be obtained by leaving the mouse on the block.
The combination of the simulation and verification tools thus helps the system designer to
understand the trace results given by the model checker, ultimately enhancing the use of the
formal verification method.

Figure 6: A possible timeline for the level-crossing model

Conclusion and further work
In this paper, we have shown that formal methods such as model checking can be efficiently
used in a SE context and can contribute to the global dependability of the system. Despite
their initial lack of formal syntax and semantics, we have indeed demonstrated that EFFBDs
can support the checking of complex safety and vivacity properties. These results have led to
the implementation of a simulation and verification software tool. We have also shown that
these tools do not require, from the designer, the knowledge of the underlying models and
concepts. Finally, we have taken advantage of the simple and intuitive behavior of the
EFFBDs to propose some semantics extensions to describe and analyze the occurrence of
failures.
Depending on the feedback we will receive on MDWORKBENCH® (currently tested and
deployed industrially), we propose to further extend the semantics of the EFFBDs so as to

model more complex behaviors (such as continuous and asynchronous flow exchanges) as
well as new property and failure classes.

References
ALUR R., COURCOUBETIS C. A. and DILL D. L. June 1990. Model-checking for real-time

systems. 5th

ANDRÉ C., MALLET F. and DE SIMONE R. Sept. 2007. Modeling of immediate vs. delayed
data communications: from AADL to UML MARTE. ECSI Forum on Specification
& Design Languages (FDL), p. 249 – 254.

 IEEE Symposium on Logic in Computer Science, p. 414 – 425.

BERTHOMIEU B., BODEVEIX J.-P., CHAUDET C., ZILIO S. D., FILALI M. and VERNADAT F.
June 2009. Formal verification of AADL specifications in the Topcased environment.
14th

EVROT D., PÉTIN J.-F. and MOREL G. 2008. Combining SysML and formals methods for
safety requirements verification. Insight Journal of INCOSE, 11(3), p. 21 – 22.

 Ada-Europe International Conference on Reliable Software Technologies,
LCNS(5570), p. 207 – 221.

GAREY M. R. and JOHNSON D. S. Jan. 1979. Computers and Intractability: A Guide to the
Theory of NP-Completeness.

HENZINGER T. A., MANNA Z. and PNUELI A. June 1991. Timed transition systems. Real-
Time: Theory in Practice (proceedings of the REX Workshop), LCNS(600), p. 226 –
251.

IEEE. Sept. 2005. IEEE Std™ 1220- 2005: IEEE Standard for Application and Management
of the Systems Engineering Process.

LAPRIE J.-C. 1992. Dependability: basic concepts and terminology. Dependable computing
and fault-tolerant systems.

LE TALLEC J.-F. and DEANTONI J. Oct. 2009. Multi-level designing approach. 3rd

LONG J. July 1995. Relationships between common graphical representations in Systems
Engineering. 5

 Junior
Researcher Workshop on Real-Time Computing (JRWRTC 09), p. 23 – 26.

th

MERLIN P. M. 1974. A study of recoverability of computing systems. Ph.D. thesis, University
of California, Irvine, CA.

 International Symposium of the INCOSE.

RENAULT X., KORDON F. and HUGUES J. June 2009. Adapting models to model checkers, a
case study: Analysing AADL using time or colored Petri nets. IEEE International
Symposium on Rapid System Prototyping, p. 26 – 33.

RUGINA A.-E. Nov. 2007. Dependability modeling and evaluation – From AADL to
stochastic Petri nets. Ph.D. thesis, Institut National Polytechnique de Toulouse,
France.

SEIDNER C., LERAT J.-P. and ROUX O. H. June 2008. Usability and usefulness of formal
verification in a system design process. 18th

SEIDNER C. Nov. 2009. EFFBDs Verification: Model-checking in Systems Engineering.
Ph.D. thesis, Université de Nantes, France.

 International Symposium of the INCOSE.

SAE. Jan. 2009. AS5506: Architecture Analysis & Design Language (AADL).
SysML Finalization Task Force. Nov. 2008. OMG Systems Modeling Language (OMG

SysML™) version 1.1.

Biographies
Charlotte SEIDNER has obtained her Ph.D. degree in Control Theory and Applied Computer
Science in 2009 with a dissertation entitled “EFFBDs Verification: Model Checking in
Systems Engineering”. She also graduated from the École Centrale of Nantes with a M.S. in
Engineering (2005) and with a M.Res. in Control Theory and Computer Science (2006).
Since 2006, she works as an R&D engineer with SODIUS; her research themes include the
development of robust tools for the formal verification and simulation of high-level models.

Jean-Philippe LERAT is an engineer in Data Processing, with a specialization in systems
engineering and integration. Since 1983, he has been working in several domains, including
robotics and telecommunications.
He now runs his own company, SODIUS, devoted to assisting enterprises with the design of
systems. He also leads R&D efforts in the field of model transformation and automated code
and documents generation for system, software and hardware. He provides worldwide
expertise and training to many projects and engineers in various fields like Space industry,
Defense, Automotive etc. He is active at an INCOSE level since 1996 and a member of the
AFIS.

Olivier H. ROUX is an Assistant Professor (“maître de conférences”) at the University of
Nantes; since 2006, he also holds an HDR (accreditation to supervise Ph.D. students). He
obtained his Ph.D. degree in 1994, and has held positions at the École Centrale of Nantes
before joining the University of Nantes in 1998.
He carries out his research activity at the Research Institute for Communications and
Cybernetics in Nantes (IRCCyN). His research themes include verification using model-
checking techniques and control issues on timed systems. He has a particular interest in time
Petri nets and timed automata as well as in their stopwatch extensions.

	Introduction: the why’s and how’s of formal verification
	From the description of EFFBDs to their simulation
	Formal verification of EFFBD models
	From functional to dysfunctional models
	The level-crossing problem
	Conclusion and further work
	References
	Biographies

	Prev:
	Next:
	Close:
	First:

