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Abstract. Verification is a key process in the dependability engineering of complex systems. 
As we have shown in earlier works, formal verification techniques such as model checking 
can be efficiently used in a Systems Engineering (SE) context, despite their inherent 
complexity. Considering the widely used Enhanced Function Flow Block Diagrams 
(EFFBDs), we have indeed developed a formal simulation and verification tool for these 
functional behavior models. Moreover, great care has been taken to conceal the processing 
complexity from the tool end-user.  
In this paper, we present our latest developments as well as an extension of both method and 
tool to the case of dysfunctional models, to take into account failures affecting the model 
elements. By addressing both fault removal and fault forecasting problems with formal 
methods, we thus hope to improve the dependability analysis practice in SE.  
 

Introduction: the why’s and how’s of formal verification 
Verification actions are a major tool of dependability assessment and as such have always 
been a preeminent part of Systems Engineering processes (IEEE, 2005)

A common practice for assessing the system safety is to perform either tests on the actual 
system or simulations on a behavioral model. However, this analysis cannot be exhaustive, 
even on “reasonably sized” systems, and carries the risk of missing potentially safety-critical 
situations in which the system is liable to endanger itself or its environment. To overcome 
this limitation, the designer may use a formal method such as model checking, where the 
identified properties are formally expressed and confronted to a formal model of the system, 
using efficient algorithms and data structures.  

. Given today’s trend 
to develop ever larger and more complex systems, verification has become a key element in 
the system design, all through its lifecycle. 

In previous work, we have shown that the inherent complexity of this formal method can be 
overcome and efficiently used in a SE context (SEIDNER et al., 2008). Considering the widely 
used EFFBDs (LONG, 1995), we have indeed proposed their formalization and translation 
into a lower-level language, the time PETRI nets or TPNs (MERLIN, 1974)

This paper focuses on the latest results, both theoretical and practical, that we have obtained 

. Using both the 
properties of our translation and a software tool dedicated to the model checking of 
behavioral properties on TPNs, we have developed an analysis platform allowing the 
verification of high-level properties on EFFBDs models. By hiding the underlying models, 
we have improved the overall efficiency and usability of this formal method by the system 
designer.  
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over the last two years. We have indeed developed a simulation tool which, used in 
conjunction with our verification tool, helps the designer with the visualization and 
understanding of the verification results, thus further enhancing the usability of our method. 
We have also extended our results to take into account the possibility for some model 
elements to be affected by failures. By shifting our work from purely functional architecture 
analysis to its dysfunctional counterpart, we move from fault removal to fault forecasting, 
two major means of attaining the dependability of a system (LAPRIE

Related works. Over the last decade, the formal verification of high-level models has 
motivated a number of research work, essentially focused on the formalization of these 
models. The authors of 

, 1992).  

(ANDRÉ et al., 2007), for instance, have proposed a formal semantics 
of MARTE1, a Unified Modeling Language (UML) profile dedicated to the description of 
real-time embedded systems. It is then possible to check the behavior of communicating 
systems with regards to some protocols (LE TALLEC et al., 2009)

In this context, the Object Management Group (OMG) and the INCOSE have recently 
developed the Systems Modeling Language (SysML) as a subset of UML, adding such SE-
specific notions as requirement management (SysML, 2008). Despite the recentness of the 
language, some research works on the formal verification of SysML diagrams have already 
been proposed. The authors of (

. Yet, and despite similar 
efforts, UML semantics is still incomplete (or contradictory) and largely software-oriented. 

EVROT

Lastly, the Architecture Analysis and Design Language or AADL, described in (SAE, 2009), 
has been gaining importance over the last years as a powerful modeling tool by supporting 
the analysis of a number of formal properties such as reliability, deadlock detection, deadline 
management, etc. (

 et al., 2008) give for instance a method for checking 
some safety properties on SysML models. However, their method is only semi-formalized 
and does not address the usability problem of such formal methods in a SE context.  

RUGINA 2005; BERTHOMIEU et al., 2009; RENAULT

Outline of the paper. We first give and informal view of the EFFBDs and then describe their 
formalization and simulation. We then present the verification method and the software tool 
we have developed over the last two years. The next section proposes a description of the 
failures that can affect an EFFBD; it also extends the various results obtained so far. We then 
illustrate these results on the classic level-crossing problem. Finally, we conclude this paper 
by presenting some outlooks and prospects of our research and development works.  

 et al., 2009). However, 
the language still suffers from semantics imprecision, lacks maturity and is still largely real-
time and embedded system-oriented.  

 

From the description of EFFBDs to their simulation 
This section introduces the EFFBDs as the high-level models on which we later propose the 
verification of some complex behavioral properties. We give here a simplified version of its 
formal syntax and semantics, as established in (SEIDNER, 2009), and briefly present the 
simulation tool built from this formal description.  
An informal description. System designers often use relatively simple graphical 
representations to efficiently describe both the functional structure of a system and the data 
flow exchanges. Among these representations, FFBDs (developed in the late 1950s) and the 
derived EFFBDs are some of the most widely used in Systems Engineering (LONG

                                                      
1 MARTE stands for Modeling and Analysis of Real Time and Embedded systems. 

, 1995). 
Indeed, they provide the designer with an easy framework to describe the behavior of 
complex, distributed, hierarchical, concurrent and communicating systems. More specifically, 
they describe the functions performed by the system and the order in which they are executed. 



 

  

This order is specified through:  
• the functions’ dynamic i.e. their execution duration; 
• the control environment, namely the control constructs or structures; 
• the data environment (items and resources).  

While functions are represented by rectangles, control structures are usually denoted by two 
complementary round nodes (see below). A large variety of control structures is available, 
such as:  

• parallel branches (AND), including “kill branches” that force the termination of other 
branches in the parallel structure; 

• selection structures (OR) and multi-exit functions; 
• iterations (IT) and loops2

An EFFBD is organized in a main scenario; to support the modeling of hierarchical systems, 
functions can in turn contain sub-scenarios. In addition, EFFBDs model data flows; in this 
work, we merged the notions of both item and resource (distinct in the original formalism) 
into the concept of flow. A flow can be consumed, produced or captured by functions

 (LP). 

3

Figure 1

, and 
models such diverse elements as signals, finished products or CPU memory. Graphically, the 
relation between a function and a flow is represented by a weighted arrow.  

 shows an example of an EFFBD; the diagram does not correspond to an actual 
system but rather represents the language main features. To make the reading easier, flow 
quantities equal to 1 are not mentioned on the arrows modeling their exchange.  
 
 

 
Figure 1: Example of an EFFBD, adapted from (LONG, 1995) 

 
The behavioral semantics of an EFFBD is quite intuitive: informally speaking, it consists of a 
set of rules describing the course of the control flow along the structures, the execution of a 
function, the production of some flow, etc.  

                                                      
2 Loops are infinite and can only be exited by reaching a loop exit (LE) structure.  
3 It can also be checked, that is read without being actually consumed by the receiving function. 



  

For instance, the behavior of a parallel structure is the following:  
 once the control flow has reached the opening AND node, the first structure on each 

parallel branch is activated; 
 once the last structure of each parallel branch has finished its execution4

Likewise, the behavior of a function, once enabled by the control flow, is the following: 

, the parallel 
structure is exited and the control flow transferred to the structure following the 
closing AND node.  

 [if needed] wait for all the input flows to become available; 
 [if needed] synchronously consume the input flows; 
 start the execution; 

After a certain duration, described by an interval: 
 end the execution; 
 [if needed] synchronously produce the output flows; 
 transfer the control flow to the next structure.  

Formalization of the EFFBDs. To our knowledge, no formal semantics had been given to 
the EFFBDs before our work, despite their intuitive behavior. Yet, this formalization is an 
indispensable step to any further formal analysis.  
Regarding its syntax, an EFFBD can be seen as a set of: 

• nodes modeling the control structures (including the functions); 
• flows linked to the function nodes by weighted arcs denoting exchanged quantities; 
• intervals giving for each function its minimum and maximum execution duration.  

The behavior of an EFFBD is then described as a succession of states; each state represents: 
• the activity of each node: it can be either inactive, enabled, executed5

• the level of each flow, i.e. the quantity of flow available in this state; 

 or, for 
functions only, executing; 

• the time elapsed since the beginning of the execution of each function.  
Since time elapsing is here a continuous process, each given model corresponds to an infinity 
of possible executions. The set of all possible executions can be symbolically represented by 
a very low-level language known as a Timed Transition System or TTS (HENZINGER et al., 
1991).  
More formally, the semantics of an EFFBD E is a tuple (S, s0

• S is the set of states, as described above; 
, N, →) where: 

• s0

• N is the set of nodes; 
 is the initial state; 

• → is the transition relation that formalizes the semantics rules described above by 
declaring how to proceed from a state to the following.  

From this description, a complete version of which can be found in (SEIDNER, 2009), we were 
able to define the class of bounded EFFBDs for which the flow levels always stay finite. The 
practical implication of the boundedness of an EFFBD will be discussed in the next section. 
The formalization of the language was also the first step in the definition and implementation 
of a simulation tool, described in the following paragraph.  
 
                                                      
4 Note that such a behavior may induce synchronization-waiting states.  
5 An executed node is located at the end of a parallel branch and is waiting for the completion of the other 
parallel branches.  



 

  

An EFFBD simulation tool. As we have recalled in the introduction, simulating a system 
model cannot be, by itself, sufficient proof of its correct behavior. However, it provides the 
system designer with a fair insight upon its behavior, which is particularly needed in the early 
design phases of a complex system.  
Therefore, we have implemented the formal semantics mentioned above into a simulation 
tool. This tool is included in MDWORKBENCH®6

Figure 2

, a design and analysis platform based on 
Eclipse®. A specific version has been developed for the French Department of Defense and 
is currently being deployed and evaluated. The global running of the simulation tool is 
illustrated on .  
 

 
Figure 2: Description of the simulation tool 

 
The left-most box represents the model editor (the dashes indicate that the designer has 
access to this module); it allows the user to describe the system, mostly graphically. The 
model E is then transferred to the simulation engine (center box) to compute a series 
{s0, s1, …} of states representing a possible execution of the model. This run is then 
displayed as a timeline or chronogram in the corresponding interface (right-most box). If 
needed, the user can perform on-the-fly choices to resolve flow conflicts, multiple choices in 
selection branches, etc. Moreover, the simulation can be played step-by-step or in a unique 
run. Finally, the simulation can be exported as an XMI7

 

 file so it can be later analyzed or 
printed.  

Formal verification of EFFBD models 
In this section, we present the main results and tools used to perform the formal verification 
of complex behavioral properties expressed on EFFBDs. The complete verification process, 
including the transformation into TPNs, was described in (SEIDNER et al., 2008); in this 
paper, we focus on the system engineer’s point of view by describing the global verification 
principles, the main property classes and finally our verification software tool.  

General principles. From the formal semantics of the EFFBDs, it would be possible to 
design and develop a model checker that directly analyzes the high-level models. However, 
we chose to propose instead a translation of the EFFBDs into a lower-level model, the TPNs. 
This step indeed allowed us to take advantage of the numerous works that have been carried 

                                                      
6 See http://www.mdworkbench.com for further details. 
7 XMI is the OMG XML Metadata Interchange standard used for exchanging metadata information via the Ex-
tensible Markup Language (XML). 

http://www.mdworkbench.com/�


  

out on the TPNs and most notably of the ROMÉO model checker8

We designed a structural translation which creates elementary TPNs for each node and flow, 
then connects the patterns together. We have proved that the behavior of an EFFBD and its 
corresponding TPN are equivalent with regards to the strong temporal bisimulation relation. 
In other words, any timed behavioral analysis (including model checking) can be performed 
on an EFFBD or on its TPN counterpart without information loss, which justifies our 
approach.  

, a software tool designed to 
check complex quantitative temporal properties on TPNs. 

Logical property classes. Before illustrating this fundamental result with our verification 
tool, we first need to describe the safety and vivacity properties that can be expressed and 
checked by it9

To allow for an efficient use of this logic by the system designer, we have chosen to limit the 
logic expressivity by providing six high-level property classes, described and manipulated in 
natural language. Should the need arise, other property class could be added, provided that it 
can indeed be expressed with the TCTL logic.  

. These properties are expressed using the Timed Computation Tree Logic or 
TCTL (ALUR et al., 1990), a powerful yet complex formalism.  

The existing classes are presented in Table 1 along with their parameters and meaning.  
 

Table 1: Behavioral property classes 

 Property class Parameters Meaning 
I Completing execution S main scenario “S always reaches its final state” 
II Timed completing 

execution 
S 
t 

main scenario 
temporal bound 

“S always reaches its final state in less 
than t time units” 

III10 Strict temporal  
decomposition 

F 
t 

decomposed function 
temporal bound 

“The sub-scenario associated with F is 
always executed in less than t time units” 

IV Mutual exclusion F set of functions i “Only one Fi

V 

 function, at most, can be 
executed at any given time” 

Bounded response F
F

1 

t 
2 

triggering function 
triggered function 
temporal bound 

“Executing F1 leads to the execution of 
F2

VI 

 in less than t time units” 

Flow boundedness f 
m 

flow 
maximum level 

“At any time, the level of flow f is lower 
or equal to m” 

 
For instance, a class I property allows the detection of a system blockage, most likely due to a 
function waiting for an input flow that will never be produced. A class VI property can test 
the k-boundedness of the model (where k, a positive integer, is specified by the system 
engineer). Such a property is particularly helpful when dimensioning the system since it 
states that no flow level is greater than k. Moreover, an unbounded EFFBD can be the 
consequence of a badly designed model (as most systems are physical and intrinsically 
bounded) and the non verification of the k-boundedness should alert the architect on a flaw in 
the system design.  
From a theoretical point of view, we have shown that the model checking of these properties 
is a decidable problem for bounded EFFBDs and that it belongs to the class of PSPACE-
complete problems11

                                                      
8 The software tool is available at 

.  

http://romeo.rts-software.org  
9 A safety property means that a “bad situation” will never occur; a vivacity property that a “good situation” will 
eventually occur. 
10 This property is actually a generalization of the class II property. 
11 For further details on decidability and complexity problems, see for instance (Garey et al., 1979). 

http://romeo.rts-software.org/�


 

  

An EFFBD verification tool. As mentioned above, we have implemented these results in 
MDWORKBENCH®, as illustrated by Figure 3 (the legend is the same as in Figure 2). 

 
Figure 3: Description of the verification tool 

 
As earlier, the left-most box represents the model editor; the model E and the property P are 
transferred to the verification engine to be transformed into equivalent, low-level model and 
property ε and π. These elements are then analyzed by the ROMÉO model checker (bottom) 
which computes the truth value of π. If the property is not true, it provides a run or trace τ as 
a sequence of TPN transitions leading to a state contradicting π.  
Finally, this trace is translated back by the verification tool into a high-level trace T, which is 
a sequence of EFFBD functions executions, ending on a state contradicting P. This result is 
then displayed in a console (right-most box) and can be exported as a text file. It should be 
noted that the complexity of the treatment is completely hidden from the system designer, 
who only manipulates the high-level objects.  
 

From functional to dysfunctional models 
The previous sections have described the system from a functional point of view only; the 
verification of such models is indeed a major process in fault removal, one of the mean of 
attaining the dependability of a system. This dependability can also be reached through fault 
forecasting, where faults or failures are injected into the model and analysis are performed on 
the dysfunctional architecture.  
In this section, we first propose a description of the failures that can affect either the 
functions or the flows of an EFFBD. We then extend the behavioral properties defined earlier 
as well as the main results presented above.  

Failures description. The failures we chose to model are largely inspired by the usual 
failures modes, described in such methods as the Failure Modes and Effects Analysis 
(FMEA). Failures can affect a function or a flow and are either permanent or transient. In the 
latter case, an occurrence probability is added to the failure description. We consider seven 
failure types; the five first affect a function: 

(i) No activation: when reached by the control flow, the function is neither enabled nor 
executed; the control flow is not transferred to the next structure. 

(ii) Infinite duration: once the execution has started, it cannot end. 
(iii) Modified duration: the execution starts and ends normally, except its duration now 

belongs to a new interval (described by the failure parameters). 
(iv) No outputs: at the end of its execution, the function transfers the control flow without 



  

producing its output flows. 
(v) No control transmission: at the end of its execution, the function produces its output 

flows but does not transfer the control flow. 
A type (i) failure corresponds to the “no start” generic failure mode while type (ii) is a “no 
end” failure mode.  
Two failure types can affect the flows:  

(vi) Modified initial level: the initial level of the flow is given by a new value. 
(vii) Modified produced quantity: the flow quantity produced by the function is given by a 

new value.  
A type (vii) failure is actually a refinement of type (iv) and affects a function-flow couple.  

Extending the properties. We have extended the formal syntax and semantics of the 
EFFBDs to take the failures into account. In particular, a function can now be in the failed 
activity. We have also described four more high-level property classes, given in Table 2. In 
the following, we assume that all failures are of type (i) and that they affect functions F and 
F1 to Fn
 

.  

Table 2: Extension of the properties 

 Property type Parameters Meaning 
VII Reliability F function “F never fails” 
VIII Recovery F 

t 
function 
temporal bound 

“F never stays in the failed activity 
more than t time units in a row” 

IX Bounded response 
after failure 

F, G 
t 

functions 
temporal bound 

“The failure of F always triggers the 
execution of G in less than t time units” 

X Failure mutual 
exclusion 

F set of functions i “Only one function Fi

 

, at the most, can 
fail at the same time” 

For instance, a class X property can test the robustness of a two-branch redundant 
architecture, where at last one redundant branch must not fail.  

Main results. From the various formal descriptions we developed, we were able to extend 
the elementary patterns to translate the dysfunctional EFFBDs into TPNs. We were also able 
to extend the simulation and verification tools; the model checking of the properties is still a 
decidable and PSPACE-complete problem for bounded EFFBDs. Additionally, the 
simulation tool allows some failure traceability since any failed function execution or flow 
production can be graphically marked and linked to the description of the failure (see below). 
 

The level-crossing problem 
We have chosen to illustrate these results on the classical level-crossing problem. This 
section voluntarily presents a simplified version of the problem: indeed, we want to hint with 
this example at the expressivity and power of the method, while keeping a discourse as clear 
as possible.  
We first discuss the system and its modeling, including two function failures, and then 
describe two safety and vivacity properties. Finally, we show the simulation and verification 
results obtained on the dysfunctional model.  

System and model description. We focus here on the common half-barrier level-crossing 
(LC). It consists of two half-barriers, bells and red flashing lights on either side of the road. 
The gates are surrounded by the short zone (see Figure 4) which is preceded by a longer 
approach warning zone. A pedal located at point A signals any approaching train; another 



 

  

pedal in E detects the last train carriage and commands the reset of the LC. A fuller 
description of the system and modeling hypothesis can be found in (SEIDNER, 2009). 
 

 
Figure 4: Schematic plan of the railroad level-crossing 

 

Once the pedal in A is activated, the events are the following:  
 flash the lights and start ringing the bells; 
 after 5 seconds, lower the gates; 
 once the gates are down (after 5 to 10 seconds), stop the bells; 
 once the pedal in E is activated, raise the gate; 
 once the gates are up (after 10 to 15 seconds), turn the lights off.  

We assume here that the trains are 190 meters long and that they can travel at a speed (not 
necessarily constant) comprised between 10 m/s and 20 m/s (about 35km/hr or 20 mph and 
70 km/hr or 45 mph). In addition, the zone between points A and E is a one-way single track. 
More precisely, we suppose that the track is looping, that only one train is on it and that it 
takes at least 2 minutes for the train to get back from E to A. It is therefore unnecessary to 
model any LC access protection system.  
Finally, we suppose that the road users are respectful of the traffic regulations. Therefore, we 
only have to model the train (which can be seen as the LC environment), the controller and 
the gates. The resulting model is illustrated by Figure 5; when not equal to [0, 0], the duration 
intervals are directly mentioned on the functions. The time unit is the second and, to make the 
reading easier, the flashing light control is not modeled.  
 

 
Figure 5: EFFBD model of the level-crossing problem 

 
We have adopted a classical parallel architecture where each branch represents one “organ” 



  

of the system or its environment12

Finally, we suppose that two failures can affect the system: 

. Each branch communicates and is synchronized with the 
others through flows. For instance, the approach of a train (through the activation of the pedal 
in A) is modeled by the flow approaching, produced by Reach A and triggering the 
execution of Monitor incoming trains. Note the open and closed flows: they 
describe the aperture state of the gates (as the gates are initially raised, the level of open is 
initially 1 while the initial level of closed is 0). Note also that the train is on the level-
crossing exactly when the function Leave D is executing.  

F1.  “Due to a wrong modeling, the gates always take 30% more time than expected to 
reach the low position” 

F2. “Trains have a 1% chance of staying blocked on the level-crossing” 
We thus add the following failures: 

• F1 is a permanent type (iii) failure affecting function Lower gates and is 
characterized by the new temporal interval [7; 13]; 

• F2 is a transient type (ii) failure affecting function Leave D, with a 0.01 probability 
of occurrence. 

Properties description. We can now describe the two following behavioral properties: 
P1. “To ensure the safety of the LC and its environment (including the road users), the 

barriers must be closed if a train is on the LC” 
P2. “To keep a smooth road traffic, the gates should not stay closed more than 90 seconds 

in a row” 
P1 is a safety property and can be modeled by a type IV property (mutual exclusion) between 
functions Leave D and Raise gates. P2, a vivacity property, can be modeled as a type V 
property (bounded response) where the triggering function is Lower gates, the triggered 
function Raise gates and the temporal bound 90 seconds.  

Main results. In this last paragraph, we focus on the analysis of the dysfunctional model. 
Moreover, we wish to recall that the properties described above and the model itself are 
simple enough to be checked “by hand”: again, our goal here is to give an insight into the 
power of the method.  
P1 is verified: indeed, the functional model (and the system itself) is designed to enforce the 
safety property. The model is robust enough to allow for the large imprecision on the duration 
of Lower gates caused by F1. Finally, the occurrence of F2, where the train is blocked on 
the LC (thus blocking the gates in their lower position) only reinforces the property. 
On the other hand, the vivacity property is not verified. Indeed, when the train is blocked on 
the LC due to the occurrence of failure F2, the whole model comes to a deadlock and the 
gates can no longer be raised, thus invalidating the property. A corresponding trace, given by 
Table 3, is thus computed by our verification tool. As Reach D never ends, due to the 
occurrence of F2, it is not part of the trace.  
 

Table 3: An execution trace of the level-crossing model 

Ending function 
Reach A 

Monitor incoming trains 
Start ringing 
Lower gates 

                                                      
12 Needless to say, the modeling of this system is not unique.  



 

  

Stop ringing 
Reach B 
Reach C 

 
A simulation run of the system is illustrated by Figure 6 (to make the reading easier, we 
shifted the timeline to let is start after 120 seconds).  To simplify the reading, no flows except 
open and closed are represented; they are marked by blue blocks. The execution of a 
function is marked by a green block while the wait for some input flow is marked in orange. 
Note that, during the execution of Lower gates (between 160.5 time units and 173.0 time 
units), the gate is neither open nor closed: it is indeed lowering.  
Symbols are added to the blocks to mark the occurrence of a failure. For instance, F1 causes 
the function Lower gate to have a modified duration, which is denoted by a warning sign 
and a red clock symbol on the right of the execution block. Likewise, the infinite duration of 
function Leave D, caused by the occurrence of F2, is denoted by a ∞ symbol (also 
mentioned on the date line). Additionally, a contextual menu linking to the failure description 
can be obtained by leaving the mouse on the block.  
The combination of the simulation and verification tools thus helps the system designer to 
understand the trace results given by the model checker, ultimately enhancing the use of the 
formal verification method.  
 

 
Figure 6: A possible timeline for the level-crossing model 

 

Conclusion and further work 
In this paper, we have shown that formal methods such as model checking can be efficiently 
used in a SE context and can contribute to the global dependability of the system. Despite 
their initial lack of formal syntax and semantics, we have indeed demonstrated that EFFBDs 
can support the checking of complex safety and vivacity properties. These results have led to 
the implementation of a simulation and verification software tool. We have also shown that 
these tools do not require, from the designer, the knowledge of the underlying models and 
concepts. Finally, we have taken advantage of the simple and intuitive behavior of the 
EFFBDs to propose some semantics extensions to describe and analyze the occurrence of 
failures.  
Depending on the feedback we will receive on MDWORKBENCH® (currently tested and 
deployed industrially), we propose to further extend the semantics of the EFFBDs so as to 



  

model more complex behaviors (such as continuous and asynchronous flow exchanges) as 
well as new property and failure classes.  
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